1/31/2021 C Programming-Pointers

Hands On C
500 Working Programs

Pointers

A Pointer is an Address

localhost:8888/notebooks/C Programming-Pointers.ipynb 114

1/31/2021 C Programming-Pointers
In [1]: #include <stdio.h>
int main(void)
{
int value = 1000;

printf("The address of value in RAM is %lu\n",(long unsigned int) &value);

The address of value in RAM is 140725710632564

In [2]: #include <stdio.h>

int main(void)

{
int value = 1000;
int b = 2;
printf("The address of value in RAM is %lu\n",(long unsigned int) &value);
printf("sizeof value is %1d bytes\n", sizeof(value));
printf("Next variable should start at %1d\n", (long unsigned int) &value + siz
printf("The address of b in RAM is %lu\n",(long unsigned int) &b);

}

The address of value in RAM is 140735132690000
sizeof value is 4 bytes

Next variable should start at 140735132690004
The address of b in RAM is 140735132690004

In [3]: #include <stdio.h>

int main(void)

{
int value = 1000;
int b = 2;
printf("The address of value in RAM is %1lu\n",(long unsigned int) &value);
printf("The value of value is %d\n", value);
printf("The address of b in RAM is %lu\n", (long unsigned int) &b);
printf("The value of b is %d\n", b);

}

The address of value in RAM is 140725116965024
The value of value is 1000

The address of b in RAM is 140725116965028

The value of b is 2

localhost:8888/notebooks/C Programming-Pointers.ipynb 2/14

1/31/2021 C Programming-Pointers

Declaring a Pointer Variable

In [4]: #include <stdio.h»>
int main(void)
{
int value = 1000;
int *pointer;

pointer = &value;

printf("Value %d\n", *pointer);

Value 1000

In [5]: #include <stdio.h>
int main(void)
{
int value = 1000;

int *pointer;

pointer = &value; // assign the address
*pointer = 5000; // assign a value to the address

printf("Value pointed to by *pointer is %d\n", *pointer);
printf("value %d\n", value);

Value pointed to by *pointer is 5000
value 5000

localhost:8888/notebooks/C Programming-Pointers.ipynb

3/14

1/31/2021 C Programming-Pointers
In [6]: #include <stdio.h>

int main(void)

{
float pi = 3.14;
float *pointer = π
printf("pi %f\n", pi);
*pointer = 22.0/7.0;
printf("pi %f\n", pi);

}

pi 3.140000

pi 3.142857

C Treats an Array as a Pointer

In [7]: #include <stdio.h>
int main(void)
{
int array[] = { 1, 2, 3, 4, 5};

printf("The address of array is %1d\n", (long unsigned int) array);

The address of array is 140726186322704

localhost:8888/notebooks/C Programming-Pointers.ipynb

4/14

1/31/2021 C Programming-Pointers
In [8]: #include <stdio.h>

int main(void)

{
int array[5] = { 1, 2, 3, 4, 5};
char string[] = "Hello, world";
printf("The address of array is %1d\n", (long unsigned int) array);
printf("The address of string is %1d\n", (long unsigned int) string);
}

The address of array is 140731464169632
The address of string is 140731464169659

In [9]: #include <stdio.h>

void showString(char *string)

{
while (*string)
printf("%c", *string++);
}
int main(void)
{
char string[] = "Hello, world\n";
showString(string);
}

Hello, world

In [10]: #include <stdio.h>

void showString(char *string)

{
while (*string)
printf("%c", *string++);
}
int main(void)
{
char *string = "Hello, world\n";
showString(string);
}

Hello, world

localhost:8888/notebooks/C Programming-Pointers.ipynb 5/14

1/31/2021 C Programming-Pointers

Using a Pointer to an Array of float

In [11]: #include <stdio.h>

void showArray(float *values, int size)

{
for (int i = 0; i < size; ++i)
printf("%f ", *values++);

}

int main(void)

{
float values[5] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

showArray(values, 5);

}

1.100000 2.200000 3.300000 4.400000 5.500000

localhost:8888/notebooks/C Programming-Pointers.ipynb 6/14

1/31/2021 C Programming-Pointers

Understanding an Array of Pointers

In [12]: #include <stdio.h>

int main(void)

{

char *strings[5] = { "Hello, ", "World", "Pointers", "are", "easy!" };

for (int 1 = 0; i < 5; ++i)
printf("%s\n", strings[i]);

Hello,
World
Pointers
are
easy!

In [13]: #include <stdio.h>
int main(int argc, char *argv[])
{
for (int i = 0; i < argc; ++i)

printf("%s\n", argv[i]);
}

/tmp/tmpgbz 9rte.out

Creating a Pointer to Pointer

localhost:8888/notebooks/C Programming-Pointers.ipynb 7114

1/31/2021 C Programming-Pointers

In [14]: #include <stdio.h>

int main(void)

{
char *strings[6] = { "Hello, ", "World", "Pointers", "are", "easy!" };
char **pointer = strings;
while (*pointer)

printf("%s\n", *pointer++);

}

Hello,

World

Pointers

are

easy!

In [15]: #include <stdio.h>

int main(int argc, char **argv)

{
while (*argv)
printf("%s ", *argv++);
}
/tmp/tmpfdzk7hm8.out

Getting Crazy a Pointer to a Pointer to a
Pointer

localhost:8888/notebooks/C Programming-Pointers.ipynb 8/14

1/31/2021 C Programming-Pointers
In [16]: #include <stdio.h>

int what_is_the_value(int ***ptr)
{

return(***ptr);

}

int main(void)

{

int *level 1, **level 2, ***]evel 3, value = 1001;

level 1 = &value;
level 2 = &level 1;
level 3 = &level 2;

printf("The value is %d\n", what_is_the_value(level 3));

The value is 1001

Why Pointers are Dangerous

localhost:8888/notebooks/C Programming-Pointers.ipynb 9/14

1/31/2021 C Programming-Pointers
In [17]: #include <stdio.h>

int main(void)

{

char stringl[25]
char string2[25]

"Hello, world";
"Kris Jamsa";

char *pointerl
char *pointer2

stringl;
string2;

while (*pointerl) // find end of stringl
pointerl++;

while (*pointerl++ = *pointer2++) // append string2

J

printf("%s\n", stringl);

Hello, worldKris Jamsa

In [18]: #include <stdio.h>

int main(void)

{
char stringl[] = "Hello, world";
char string2[25] = "Kris Jamsa";
char *pointerl = stringil;
char *pointer2 = string2;
while (*pointerl) // find end of stringl
pointerl++;
while (*pointerl++ = *pointer2++) // append string2
; // error exceeds size of stringl
printf("%s\n", stringl);
}

Hello, worldKris Jamsa

localhost:8888/notebooks/C Programming-Pointers.ipynb

10/14

1/31/2021 C Programming-Pointers

Using a Pointer to a Function

In [19]: #include <stdio.h>

void one(void)

{
}

printf("1111");

void two(void)

{
}

printf("2222");

void callAFunction(void (*function)(void))

{

function();

}

int main(void)

{

callAFunction(two);
callAFunction(one);

}

22221111

localhost:8888/notebooks/C Programming-Pointers.ipynb 11/14

1/31/2021 C Programming-Pointers
In [20]: #include <stdio.h>

int add(int a, int b)
{

}

int mult(int a, int b)
{

}

return(a+b);

return(a*b);

void callAFunction(int (*function)(int, int), int a, int b)

{
}

printf("%d ", function(a, b));

int main(void)

{
callAFunction(add, 1, 3);

callAFunction(mult, 2, 4);
}

4 8

What's Coming

Pointers to Strings
Pointers to Structures

localhost:8888/notebooks/C Programming-Pointers.ipynb 12/14

1/31/2021 C Programming-Pointers

Pointers to Functions
Dynamic Memory Allocation

What You will Learn Next

C programs make extensive use of pointers, particulary with character strings.

In the next lesson, you will learn how to build your own string library of
commonly-used string operations.

int strlen(char *string)

{

int count = 0;

while (*string++)
count++;

return(count);

}

localhost:8888/notebooks/C Programming-Pointers.ipynb 13/14

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 14/14

