
1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 1/14

A Pointer is an Address

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 2/14

In [1]:

In [2]:

In [3]:

The address of value in RAM is 140725710632564

The address of value in RAM is 140735132690000
sizeof value is 4 bytes
Next variable should start at 140735132690004
The address of b in RAM is 140735132690004

The address of value in RAM is 140725116965024
The value of value is 1000
The address of b in RAM is 140725116965028
The value of b is 2

#include <stdio.h>

int main(void)
{
 int value = 1000;

 printf("The address of value in RAM is %lu\n",(long unsigned int) &value);
}

#include <stdio.h>

int main(void)
{
 int value = 1000;
 int b = 2;

 printf("The address of value in RAM is %lu\n",(long unsigned int) &value);
 printf("sizeof value is %ld bytes\n", sizeof(value));
 printf("Next variable should start at %ld\n", (long unsigned int) &value + size
 printf("The address of b in RAM is %lu\n",(long unsigned int) &b);
}

#include <stdio.h>

int main(void)
{
 int value = 1000;
 int b = 2;

 printf("The address of value in RAM is %lu\n",(long unsigned int) &value);
 printf("The value of value is %d\n", value);
 printf("The address of b in RAM is %lu\n",(long unsigned int) &b);
 printf("The value of b is %d\n", b);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 3/14

Declaring a Pointer Variable
In [4]:

In [5]:

Value 1000

Value pointed to by *pointer is 5000
value 5000

#include <stdio.h>

int main(void)
{
 int value = 1000;

 int *pointer;

 pointer = &value;

 printf("Value %d\n", *pointer);
}

#include <stdio.h>

int main(void)
{
 int value = 1000;

 int *pointer;

 pointer = &value; // assign the address
 *pointer = 5000; // assign a value to the address

 printf("Value pointed to by *pointer is %d\n", *pointer);
 printf("value %d\n", value);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 4/14

In [6]:

C Treats an Array as a Pointer
In [7]:

pi 3.140000
pi 3.142857

The address of array is 140726186322704

#include <stdio.h>

int main(void)
{
 float pi = 3.14;

 float *pointer = π

 printf("pi %f\n", pi);

 *pointer = 22.0/7.0;
 printf("pi %f\n", pi);
}

#include <stdio.h>

int main(void)
{
 int array[] = { 1, 2, 3, 4, 5};

 printf("The address of array is %ld\n", (long unsigned int) array);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 5/14

In [8]:

In [9]:

In [10]:

The address of array is 140731464169632
The address of string is 140731464169659

Hello, world

Hello, world

#include <stdio.h>

int main(void)
{
 int array[5] = { 1, 2, 3, 4, 5};
 char string[] = "Hello, world";

 printf("The address of array is %ld\n", (long unsigned int) array);
 printf("The address of string is %ld\n", (long unsigned int) string);
}

#include <stdio.h>

void showString(char *string)
{
 while (*string)
 printf("%c", *string++);
}

int main(void)
{
 char string[] = "Hello, world\n";

 showString(string);
}

#include <stdio.h>

void showString(char *string)
{
 while (*string)
 printf("%c", *string++);
}

int main(void)
{
 char *string = "Hello, world\n";

 showString(string);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 6/14

Using a Pointer to an Array of float
In [11]:

1.100000 2.200000 3.300000 4.400000 5.500000

#include <stdio.h>

void showArray(float *values, int size)
{
 for (int i = 0; i < size; ++i)
 printf("%f ", *values++);
}

int main(void)
{
 float values[5] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
 showArray(values, 5);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 7/14

Understanding an Array of Pointers
In [12]:

In [13]:

Creating a Pointer to Pointer

Hello,
World
Pointers
are
easy!

/tmp/tmpgbz_9rte.out

#include <stdio.h>

int main(void)
{
 char *strings[5] = { "Hello, ", "World", "Pointers", "are", "easy!" };

 for (int i = 0; i < 5; ++i)
 printf("%s\n", strings[i]);
}

#include <stdio.h>

int main(int argc, char *argv[])
{
 for (int i = 0; i < argc; ++i)
 printf("%s\n", argv[i]);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 8/14

In [14]:

In [15]:

Getting Crazy a Pointer to a Pointer to a
Pointer

Hello,
World
Pointers
are
easy!

/tmp/tmpf4zk7hm8.out

#include <stdio.h>

int main(void)
{
 char *strings[6] = { "Hello, ", "World", "Pointers", "are", "easy!" };
 char **pointer = strings;

 while (*pointer)
 printf("%s\n", *pointer++);
}

#include <stdio.h>

int main(int argc, char **argv)
{
 while (*argv)
 printf("%s ", *argv++);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 9/14

In [16]:

Why Pointers are Dangerous

The value is 1001

#include <stdio.h>

int what_is_the_value(int ***ptr)
 {
 return(***ptr);
 }

int main(void)
 {
 int *level_1, **level_2, ***level_3, value = 1001;

 level_1 = &value;
 level_2 = &level_1;
 level_3 = &level_2;

 printf("The value is %d\n", what_is_the_value(level_3));
 }

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 10/14

In [17]:

In [18]:

Hello, worldKris Jamsa

Hello, worldKris Jamsa

#include <stdio.h>

int main(void)
{
 char string1[25] = "Hello, world";
 char string2[25] = "Kris Jamsa";

 char *pointer1 = string1;
 char *pointer2 = string2;

 while (*pointer1) // find end of string1
 pointer1++;

 while (*pointer1++ = *pointer2++) // append string2
 ;

 printf("%s\n", string1);
}

#include <stdio.h>

int main(void)
{
 char string1[] = "Hello, world";
 char string2[25] = "Kris Jamsa";

 char *pointer1 = string1;
 char *pointer2 = string2;

 while (*pointer1) // find end of string1
 pointer1++;

 while (*pointer1++ = *pointer2++) // append string2
 ; // error exceeds size of string1

 printf("%s\n", string1);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 11/14

Using a Pointer to a Function
In [19]:

22221111

#include <stdio.h>

void one(void)
{
 printf("1111");
}

void two(void)
{
 printf("2222");
}

void callAFunction(void (*function)(void))
{
 function();
}

int main(void)
{
 callAFunction(two);
 callAFunction(one);
}

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 12/14

In [20]:

What's Coming

4 8

#include <stdio.h>

int add(int a, int b)
{
 return(a+b);
}

int mult(int a, int b)
{
 return(a*b);
}

void callAFunction(int (*function)(int, int), int a, int b)
{
 printf("%d ", function(a, b));
}

int main(void)
{
 callAFunction(add, 1, 3);
 callAFunction(mult, 2, 4);
}

Pointers to Strings
Pointers to Structures

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 13/14

What You will Learn Next

Pointers to Functions
Dynamic Memory Allocation

C programs make extensive use of pointers, particulary with character strings.
In the next lesson, you will learn how to build your own string library of
commonly-used string operations.

int strlen(char *string)
{
 int count = 0;

 while (*string++)
 count++;

 return(count);
 }

1/31/2021 C Programming-Pointers

localhost:8888/notebooks/C Programming-Pointers.ipynb 14/14

